
1Thought Machine | Domain-driven design and the future of payments

Domain-driven design and the
future of payments

1 Thought Machine | Domain-driven design and the future of payments

Author:

Yoav Ash
Senior Product Manager, Vault Payments
Thought Machine
yoav@thoughtmachine.net

Introduction
Over time, payment orchestration
platforms in banks have evolved as a
collection of isolated systems to serve the
specific requirements of different
payment rails.

As a result, aggregating front-end channel access,
integrating with the bank stack, billing, and performing
analytics across these systems can be difficult.
It is time and resource-consuming when changes are
needed to comply with new regulatory requirements or
to add new features to enhance customer experience.
Supporting new payment rails or use cases often
entails significant investment and business disruption.
The need to operate multiple systems also comes with
cost considerations, including licensing and
operations support.

mailto:yoav%40thoughtmachine.net?subject=

2Thought Machine | Domain-driven design and the future of payments

Banks face the challenge of handling multiple and
diverse payment methods, including traditional
methods such as cash, cheques and wire transfers,
and newer methods such as digital payments, mobile
payments, and e-commerce payments. Each payment
method has its unique characteristics and requires
different systems and processes to support it, and
consequently, a common payment stack consists of
multiple payment platforms.

It stands to reason that banks want to consolidate
payment processes into a single platform. By doing so,
banks gain operational and cost efficiency, have less
exposure to cybersecurity and regulatory compliance
risk, and can offer a frictionless customer experience.

Why do banks
need a new
payment engine?

What today looks like

Imagine a much cleaner picture

3 Thought Machine | Domain-driven design and the future of payments

However, consolidating multiple and disparate payment
methods, schemes, and types into a single platform
presents challenges.

Different payment methods may have varying business
requirements, compliance standards and procedures—
leading to additional technical considerations. For
example, a credit card processor must be able to
respond to authorisation requests within a matter of a
few hundred milliseconds. A credit card processor must
also be aware of the card scheme’s guarantees.

In contrast, the processing of direct debit batches is
not time sensitive, but the processor must be able
to schedule sending payments and settle them over
multiple days. Modern instant payment systems such
as RT1 and FedNow use single ISO 20022 messages,
while older systems such as BACS and ACH use files
with proprietary formats.

Banks won’t find a payment system with connectivity to
all payment methods because they cannot anticipate
enough of the new payment methods that may arise in
today’s fast-evolving and complex financial world.
A simple look at the payment methods that came onto
the scene over the last two years makes the case.

And so here is the key point of this paper: Banks need
a single payment orchestration system to simplify their
stack and lower the cost of ownership and change,
while gaining full control over the behaviour of their
payments and the flexibility to future proof the solution,
add new payment methods, and innovate.

“Banks need a single
payment orchestration
system to simplify
their stack and lower
the cost of ownership
and change”

4Thought Machine | Domain-driven design and the future of payments

“These components
should be as ‘thin’
as possible and be
concerned solely
with connectivity
protocols and
transformation
so that common
functionality can
be provided by
the engine”

Consolidation by simply combining everything in a single
box is not possible because connecting to most payment
systems still requires dedicated hardware and software,
with limited or no ability to be shared across rails.

Therefore, it makes sense to maintain connectivity
components dedicated to each payment system.
These components should be as ‘thin’ as possible and
be concerned solely with connectivity protocols and
transformation so that common functionality can be
provided by the engine and not duplicated in every
payment system connector.

What should a
modern payment
engine look like?

Thin connectivity components with a
universal configurable orchestration engine

An example of a universal configurable orchestration engine

Modern payment engine

Faster
Payments connector

ACH
connector

EBA
connector

SWIFT
connector

T2
connector

Mastercard
connector

Visa
connector

5 Thought Machine | Domain-driven design and the future of payments

When it comes to orchestrating the life cycle of
different payment types, the challenge is significant
but not insurmountable. All payments are the same
at their core: a movement of funds from one account
to another. That being the case, do we still need a
dedicated solution for each payment type? Would it be
possible to build a solution that could support multiple
flows, and furthermore, could it be possible to let users
create these flows?

Before looking at how we have achieved this for
payments, let’s look at an example from a completely
different domain: video games.

In the early era of game development, engineers had
to build their technology from scratch to support
capabilities such as physics simulation, rendering,
connectivity, and scripting systems. This process was
labour intensive and required significant programming
expertise and a deep understanding of the
underlying hardware.

Today, however, game engines like Unreal and Unity
have changed how video games are made by providing
developers with a pre-built framework for creating
games. These engines include many features, such
as physics simulation, rendering, and scripting. These
features allow developers to spend more time focusing
on their game logic, using scripts that utilise the
underlying technology provided by the game engine.

The game engine is not a general-purpose software-
building tool. It provides a specific set of tools aimed
at game building, making it possible to build vastly
different game genres because the fundamental tools
they require are the same.

Games are resource intensive, which raises the
question of whether a general-purpose engine can
deliver the expected performance. In reality, since
these engines are built and optimised by people who
are experts in their field, they achieve far superior
performance to what most developers could achieve if
they were to build their own custom engines.

The approach described above applies to payments
because it allows banks to build payment orchestration
easily and quickly—you don’t need an army of
engineers to create everything from the ground up.

Giving banks the ability to build their own
payment orchestration

“These engines include
many features,
such as physics
simulation, rendering,
and scripting”

6Thought Machine | Domain-driven design and the future of payments

“To begin with, a
payment engine
must be highly
performant, reliable,
and dynamically
prioritise payments
based on their service
level agreements—
something that
workflow engines
fail at”

One common aspect of payment processing is that it
can be considered a production line, where a conveyor
system moves payments from one workstation to the
next. In the case of payments, which workstations to
use, and what order to follow will change depending
on the payment type, and our payment platform
must enable users to configure their own payment
production lines.

This might imply that the right tool for the job is a
workflow engine, but in practice, this is far from
the case.

To begin with, a payment engine must be highly
performant, reliable, and dynamically prioritise
payments based on their service level agreements—
something that workflow engines fail at. Additionally, a
payment engine must be payments-domain aware and
provide specific tools that developers can use across
payment types; otherwise, it will be left to users to
build these tools.

For example, the basic steps of payment processing
are validation, authorisation, clearing, and settlement.
Each step has specific requirements and processes
depending on the situation, but they all ultimately work
towards the same goal of completing a successful
transaction.

Domain awareness

7 Thought Machine | Domain-driven design and the future of payments

Validate
card

Mandate
services

Card
management

Validate
mandate

Screen
for fraud

Risk
system

Core banking
system

Apply
controls

Apply
controls

Check
funds

Check
funds

Screen
for fraud

Acquire

Acquire
Card
authorisation

Payment
engine

Direct debit
collection

How should a
modern payment
engine work?
Let’s return to the payment methods we covered in the
previous examples: a card authorisation and a direct
debit. In essence, both represent the intent of the
customer to authorise a merchant to draw money from
their account. So perhaps not surprisingly, the steps to
handle them are quite similar:

1. Acquire the message from the payment network

2. Verify the transaction against a pre-existing
authorisation data record

3. Consult a fraud engine to have some level of
confidence that the customer indeed authorised
the payment

4. Apply controls – limit the number or
type of transactions

5. Ensure that the customer has enough funds in their
account to cover the payment and reserve the funds

for settlement

Looking at a credit transfer instruction from a customer
to pay out of their account, we can still see similarities
in the process. The payment must be screened
for possible fraud, and the customer must have
sufficient funds to cover the payment. This payment
type requires other steps as well—to validate the
destination of the payment, calculate processing dates
and perhaps assign a fee.

The modern payment system should be a truly
payment-type agnostic platform which is still payment-
domain aware. It must represent all payment types
using a common standard (ISO 20022 is now the de
facto standard for payments worldwide), and it must
encapsulate common payment processing steps into
building blocks, allowing users to organise them in the
correct order and inject them with user and payment
system-specific logic.

All this must be delivered while keeping the payment
platform performant and reliable. It is agnostic to the
payment type, using the same engine to process them
all, but able to prioritise based on the expected SLAs
for each.

A workflow example of a modern payment engine

8Thought Machine | Domain-driven design and the future of payments

The payment landscape is rapidly changing, combining
old and new methods, resulting in new customer
expectations. Consumers now demand a seamless,
convenient, and secure payment experience that they
can easily access through various devices.

The emergence of fintech companies and non-bank
payment service providers has added to this challenge.
They often offer more innovative and customer-centric
solutions, resulting in a shift away from traditional
banking services.

To counter this trend, banks must prioritise technology
investments to keep pace with the changing payments
landscape and provide their customers with the level of
convenience and security they expect. Failure to meet
these expectations could lead to a loss of customers
and a decline in the bank’s market share.

Payment rails are increasingly commoditised and serve
as mere connectivity mechanisms to communicate with
specific payment schemes. Future payment systems’
true power and flexibility lie in the orchestration engine
that can effectively manage and streamline payment
flows across multiple payment sources.

The orchestration engine is the brain behind the
payment system, enabling businesses to offer their
customers the best payment experience while
optimising their payment operations.

An effective orchestration engine can allow businesses
to customise payment flows, manage risk, and provide
real-time payment insights.

To effectively evaluate a modern payment engine,
banks should take a holistic approach and consider
the tools available and their capacity to accommodate
diverse use cases, as opposed to simply assessing the
payment engine’s compatibility with specific, known
scenarios—adopt a forward-thinking mindset and
extend beyond the limitations of existing offerings.

To enable the integration of new payment methods
or foster interconnectivity between multiple modes of
payment, it is sensible to seek out a payment engine
equipped with the requisite resources: payment
method agnostic, ISO 20022 compliant, performant,
and reliable.

Finally, the ideal payment engine must deliver
unparalleled configurability but not at the expense of
performance and reliability.

In summary

9 Thought Machine | Domain-driven design and the future of payments

Learn about Vault Payments,
a next generation,
cloud-native payments engine:
thoughtmachine.net/vaultpayments

About the author

Yoav Ash
Senior Product Manager, Vault Payments

Yoav Ash is an experienced product manager and
solution architect with 20 years of expertise in fintech.
He has worked for leading software vendors in
the payment industry, facilitating large-scale
transformations and greenfield projects.

Yoav possesses a deep knowledge of core banking,
payment processing, and payment engines. He has
successfully implemented various payment systems
and schemes, such as SWIFT, TARGET2, SEPA, Faster
Payments, and Mastercard.

‘The truth about cloud native core banking’
‘Transform banking. Transform core.’

Additional Rethinking whitepapers:

http://thoughtmachine.net/vaultpayments

10Thought Machine | Domain-driven design and the future of payments

About Thought Machine

Thought Machine has developed the foundations of
modern banking with its cloud-native core banking and
payments technology. Its cloud-native core banking
platform, Vault Core, is trusted by leading banks
and financial institutions worldwide, including Intesa
Sanpaolo, ING Bank Śląski, Lloyds Banking Group,
Standard Chartered, SEB, Lunar, Atom bank, Curve,
and more.

Vault Payments is a cloud-native payments processing
platform – comprising a Universal Payments Engine
to support all card and account-to-account payment
types.

Vault Core and Vault Payments have been written
from scratch as an entirely cloud-native system and
give banks full control to build any product required to
flourish in a rapidly changing world.

Thought Machine is currently a team of 600 people
spread across offices in London, New York, Singapore,
and Sydney and has raised more than $500m
in funding.

For more information,
visit thoughtmachine.net

http://thoughtmachine.net

11Thought Machine | Domain-driven design and the future of payments

To speak to a member of our team, email:
contact@thoughtmachine.net

https://www.linkedin.com/company/thought-machine/
https://twitter.com/thoughtmachine
mailto:contact%40thoughtmachine.net?subject=
https://thoughtmachine.net/

